The Bernstein Technique for Integro-Differential Equations

نویسندگان

چکیده

We extend the classical Bernstein technique to setting of integro-differential operators. As a consequence, we provide first and one-sided second derivative estimates for solutions fractional equations, including some convex fully nonlinear equations order smaller than two—for which prove uniform as their approaches two. Our method is robust enough be applied Pucci-type extremal obstacle problems operators, although several results are new even in linear case. also raise intriguing open questions, one them concerning “pure” Laplacian, another being validity associated operators with general kernels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Usage of the Variational Iteration Technique for Solving Fredholm Integro-Differential Equations

Integral and integro-differential equations are one of the most useful mathematical tools in both pure and applied mathematics. In this article, we present a variational iteration method for solving Fredholm integro-differential equations. This study provides an analytical approximation to determine the behavior of the solution. To show the efficiency of the present method for our proble...

متن کامل

A new technique for solving Fredholm integro-differential equations using the reproducing kernel method

This paper is concerned with a technique for solving Fredholm integro-dierentialequations in the reproducing kernel Hilbert space. In contrast with the conventionalreproducing kernel method, the Gram-Schmidt process is omitted hereand satisfactory results are obtained. The analytical solution is represented inthe form of series. An iterative method is given to obtain the approximate solution.Th...

متن کامل

The Legendre Wavelet Method for Solving Singular Integro-differential Equations

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

متن کامل

Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method

This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...

متن کامل

A new perturbative technique for solving integro-partial differential equations

Integro-partial differential equations occur in many contexts in mathematical physics. Typical examples include time-dependent diffusion equations containing a parameter ~e.g., the temperature! that depends on integrals of the unknown distribution function. The standard approach to solving the resulting nonlinear partial differential equation involves the use of predictor–corrector algorithms, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2022

ISSN: ['0003-9527', '1432-0673']

DOI: https://doi.org/10.1007/s00205-021-01749-x